
Efficient algorithms for pattern matching with general
gaps, character classes, and transposition invariance

Kimmo Fredriksson Æ Szymon Grabowski

Published online: 6 March 2008
� Springer Science+Business Media, LLC 2008

Abstract We develop efficient dynamic programming algorithms for pattern matching

with general gaps and character classes. We consider patterns of the form p0g(a0,b0)

p1g(a1,b1)…pm-1, where pi , R, R is some finite alphabet, and g(ai,bi) denotes a gap of

length ai…bi between symbols pi and pi+1. The text symbol tj matches pi iff tj [pi.

Moreover, we require that if pi matches tj, then pi+1 should match one of the text symbols

tjþaiþ1. . .tjþbiþ1: Either or both of ai and bi can be negative. We also consider transposition

invariant matching, i.e., the matching condition becomes tj [pi + s, for some constant s
determined by the algorithms. We give algorithms that have efficient average and worst

case running times. The algorithms have important applications in music information

retrieval and computational biology. We give experimental results showing that the

algorithms work well in practice.

Keywords String matching � Sparse dynamic programming � Bounded length gaps �
Character classes � Transposition invariance

1 Introduction

Background Many notions of approximateness have been proposed in string matching

literature, usually motivated by some real problems. One of seemingly underexplored

problem with applications in music information retrieval (MIR) and molecular biology

(MB) is pattern matching with gaps (Crochemore et al. 2002). In this problem, gaps (text

substrings) of length up to a are allowed between each pair of matching pattern characters.

Moreover, in MIR applications the character matching can be relaxed with d-matching,

K. Fredriksson (&)
Department of Computer Science, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
e-mail: kimmo.fredriksson@cs.uku.fi

S. Grabowski
Department of Computer Engineering, Technical University of Łódź, Al. Politechniki 11,
90-924 Lodz, Poland
e-mail: sgrabow@kis.p.lodz.pl

123

Inf Retrieval (2008) 11:335–357
DOI 10.1007/s10791-008-9054-z

i.e., the pattern character matches if its numerical value differs at most by d to the corre-

sponding text character. In MB applications the singleton characters can be replaced by

classes of characters, i.e., text character t matches a pattern character p if t [p, where p is

some subset of the alphabet.

In MIR, practical matching models usually also incorporate transposition invariance,

i.e., invulnerability to shifting the whole pattern (over an integer alphabet) by any fixed

value. It is motivated by the fact that humans recognize a melody by the intervals between

successive notes rather than the pitches themselves.

Previous work Let us start the review from the problem without transposition invariance.

The first algorithm in this setting (Crochemore et al. 2002) is based on dynamic program-

ming, and runs in O(nm) time, where n and m are the lengths of the text and pattern,

respectively. This basic dynamic programming solution can also be generalized to handle

more general gaps while keeping the O(nm) time bound (Pinzón and Wang 2005). The basic

algorithm was later reformulated (Cantone et al. 2005a) to allow to find all pattern occur-

rences, instead of only the positions where the occurrence ends. This needs more time,

however. The algorithm in Cantone et al. (2005b) improves the average case of the one in

Cantone et al. (2005a) to O(n), but they assume constant a. Bit-parallelism can be used to

improve the dynamic programming-based algorithm to run in Oðdn=wemþ ndÞ and

Oðdn=wedad=re þ nÞ time in worst and average case, respectively, where w is the number of

bits in a machine word, and r is the size of the alphabet (Fredriksson and Grabowski 2006).

For the a-matching with classes of characters there exists an efficient bit-parallel non-

deterministic automaton solution (Navarro and Raffinot 2003). This also allows gaps of

different lengths between each pair of successive pattern characters. This algorithm can be

trivially generalized to handle (d,a)-matching (Cantone et al. 2005b), but the time com-

plexity becomes Oðndam=weÞ in the worst case. For small a the algorithm can be made to

run in O(n) time on average. The worst case time can be improved to OðndmlogðaÞ=weÞ
(Fredriksson and Grabowski 2006), but this assumes equal length gaps.

Sparse dynamic programming can be used to solve the problem in Oðnþ jMjmin

flogðdþ 2Þ; log logðmÞgÞ time, where M¼ fði; jÞjjpi � tjj � dg (and thus jMj� nm)

(Mäkinen 2003). This can be extended for the harder problem variant where transposition

invariance and character insertions, substitutions or mismatches are allowed together with

(d,a)-matching (Mäkinen et al. 2005). In this case the jMj factor becomes nm.

Our results We develop several algorithms, for both major problem variants. Our

techniques are based on sparse dynamic programming and bit-parallelism. Our first

algorithm for (d,a)-matching without transposition invariance is essentially a reformulation

of the algorithm in Mäkinen et al. (2005). The worst case running time of the algorithm is

Oðnþ jMjÞ: Our variant has the benefit that it generalizes in straight-forward way to

handle general and even negative gaps, important in some MB applications (Mehldau and

Myers 1993; Myers 1996). We then give several variants of this algorithm to improve its

average case running time to close to linear, while increasing the worst case time only up to

Oðnþ jMjðlogðnÞ þ aÞÞ: This algorithm assumes fixed integer alphabet. We also present

two simple and practical algorithms that run in O(n) time on average for a = O(r/d), but

have Oðnþminðnm; jMjaÞÞ worst case time, for any unbounded real alphabets. One of

these algorithms is then modified to work in sublinear time in average. Finally, we extend

our recent non-deterministic finite automaton-based algorithm (Fredriksson and Grabowski

2006) in order to improve its average case time complexity to sublinear for realistic

parameter combinations, without compromising its worst case time complexity.

These are the first algorithms that achieve good average and worst case complexities

simultaneously, and they are shown to perform well in practice too.

336 Inf Retrieval (2008) 11:335–357

123

We also present two algorithms handling the problem with transposition invariance,

both based on bit-parallelism and having attractive average case time complexities and

performing reasonably well in the worst case.

2 Preliminaries

Let the pattern P = p0p1p2…pm-1 and the text T = t0t1t2…tn-1 be numerical strings,

where pi, tj [R for some integer alphabet R of size r. The number of distinct symbols in

the pattern is denoted by rp. We sometimes call the set of distinct symbols in the pattern

the pattern alphabet.

In d-approximate string matching the symbols a, b [R match, denoted by a =d b, iff

|a - b| B d. Pattern P (d,a)-matches the text substring tj0 tj1 tj2 . . .tjm�1
; if pi ¼d tji for i

[{0,…, m - 1}, where ji\ ji+1, and ji+1 - ji B a + 1. If string A (d,a)-matches string B,

we sometimes write A ¼a
d B:

In all our analyses we assume uniformly random distribution of characters in T and P,

and constant a and d/r, unless otherwise stated. Moreover, we often write d/r to be terse,

but the reader should understand that we mean (2d + 1)/r, which is the upper bound for

the probability that two randomly picked characters match.

The dynamic programming solution to (d,a)-matching is based on the following

recurrence (Crochemore et al. 2002; Cantone et al. 2005a):

Di;j ¼
j tj ¼d pi AND ði ¼ 0 OR ði; j� 1 AND Di�1;j�1� 0ÞÞ

Di;j�1 tj 6¼d pi AND j [0 AND j� Di;j�1\aþ 1

�1 otherwise

8
<

:
ð1Þ

In other words, if Di,j = j, then the pattern prefix p0…pi has an occurrence ending at text

character tj, i.e., pi =dtj and the prefix p0…pi-1 occurs at position Di-1,j-1, and the gap

between this position and the position j is at most a. If pi =dtj, then we try to extend the

match by extending the gap, i.e., we set Di,j = Di,j-1 if the gap does not become too large.

Otherwise, we set Di,j = -1. The algorithm then fills the table D0…m-1,0…n-1, and reports

an occurrence ending at position j whenever Dm-1,j = j. This is simple to implement, and

the algorithm runs in O(nm) time using O(nm) space.

We first present efficient algorithms to the above problem, and then show how these can be

generalized to handle arbitrary gaps, tackling with both upper and lower bounded gap lengths,

and even negative gap lengths, and using general classes of characters instead of d-matching.

3 Row-wise sparse dynamic programming

The algorithm we now present can be seen as a row-wise variant of the sparse dynamic

programming algorithm of the algorithm in Mäkinen et al. (2005, Sect. 5.4). We show how

to improve its average case running time. Our variant can also be easily extended to handle

more general gaps (see Sect. 7).

3.1 Efficient worst case

From the recurrence of D it is clear that the interesting computation happens when tj =dpi,

and otherwise the algorithm just copies previous entries of the matrix or fills some of the

cells with a constant.

Inf Retrieval (2008) 11:335–357 337

123

Let M¼ fði; jÞjpi ¼d tjg be the set of indexes of the d-matching character pairs in P
and T. For every ði; jÞ 2 M we compute a value di,j. For the pair (i,j) where di,j is defined, it

corresponds to the value of Di,j. If ði; jÞ 62 M; then di,j is not defined. Note that dm-1, j is

always defined if P occurs at th…j for some h \ j. The new recurrence is

di; j ¼ jjði� 1; j0Þ 2 M AND 0\j� j 0 � aþ 1 AND di�1; j0 6¼ �1;

and -1 otherwise. Computing the d values is easy once M is computed. As we have an

integer alphabet, we can use table look-ups to computeM efficiently. Instead of computing

M; we compute lists L[pi], where L[pi] = {j|pi =dtj}. These are obtained by scanning the

text linearly, and inserting j into each list L[pi] such that pi d-matches tj. Clearly, there are at

most O(d) and in average only O(drP/r) symbols pi that d-match tj. Therefore this can be

obtained in O(dn) worst case time, and the average case complexity is O(n(drP/r + 1)).

Note that jMj is O(nm) in the worst case, but the total length of all the lists is at most

O(min{rP,d} n), hence L is a compact representation ofM: The indexes in L[pi] will be in

increasing order.

Consider a row-wise computation of d. The values of the first row d0,j correspond one to

one to the list L[p0], that is, the text positions j where p0 =dtj. The subsequent rows di

correspond to L[pi], with the additional constraint that j-j0 B a + 1, where j0 [L[pi-1] and

di�1;j0 6¼ �1: Since the values in L[pi] and di-1 are in increasing order, we can compute the

current row i by traversing the lists L[pi] and di-1 simultaneously, trying to enforce the

condition that L[pi][h] - di-1,k B a + 1 for some h, k. If the condition cannot be satisfied

for some h, we store -1 to di,h, otherwise we store the text position L[pi][h]. The algorithm

traverses L and M linearly, and hence runs in Oðnþ jMjÞ worst case time. We now

consider improving the average case time of this algorithm.

3.2 Efficient average case

The basic sparse algorithm still does some redundant computation. To compute the values

di,j for the current row i, it laboriously scans through the list L[pi], for all positions, even for

the positions close to where p0…pi-1 did not match. In general, the number of text

positions with matching pattern prefixes decreases exponentially on average when the

prefix length i increases. Yet, the list length |L[pi]| will stay approximately the same. The

goal is therefore to improve the algorithm so that its running time per row depends on

the number of matching pattern prefixes on that row, rather than on the number of

d-matches for the current character on that row.

The modifications are simple: (1) the values di,j = -1 are not maintained explicitly,

they are just not stored since they do not affect the computation; (2) the list L[pi] is not

traversed sequentially, position by position, but binary search is used to find the next value

that may satisfy the condition that L[pi][h] - di-1,k B a + 1 for some h, k.

Consider now the average search time of this algorithm. The average length of each list

L[pi] is O(nd/r). Hence this is the time needed to compute the first row of the matrix, i.e.,

we just copy the values in L[p0] to be the first row of d. For the subsequent rows we execute

one binary search over L[pi] per each stored value in row i of the matrix. Hence in general,

computing the row i of the matrix takes time O(|di-1| log(nd/r)), where |di| denotes the

number of stored values in row i. For i[0 this decreases exponentially as |di| = O(n(d/r) 9

qi), where q = 1 - (1 - d/r)a+1\1 is the probability that a pattern symbol d-matches in

a text window of length a symbols. Summing up the resulting geometric series over all

rows we obtain Oðn d
rð1�d=rÞaþ1Þ; which is O(nad/r) for d/r\1 - a-1/(a+1). In particular this

338 Inf Retrieval (2008) 11:335–357

123

is O(n) for a = O(r/d). Hence the average search time is O(n + nad/rlog(nd/r)). However,

the worst case search time is also increased to Oðnþ jMjlogðjMj=mÞÞ: We note that this

can be improved to Oðnþ jMjlog logððnmÞ=jMjÞÞ by using efficient priority queues

(Johnson 1982) instead of binary search.

3.3 Faster preprocessing

The O(dn) (worst case) preprocessing time can dominate the average case search time in some

cases. Note however, that the preprocessing time can never exceed Oðnþ jMjÞ: We now

present two methods to improve the preprocessing time. The first one reduces the worst case

preprocessing cost to Oð
ffiffiffi
d
p

nÞ; and improves its average case as well. The second method

achieves O(n) preprocessing time, but the worst case search time is slightly increased.

3.3.1 Oð
ffiffiffi
d
p

nÞ time preprocessing

The basic idea is to partition the alphabet into r=
ffiffiffi
d
p

disjoint intervals Ih; h ¼ 0. . .r=
ffiffiffi
d
p
� 1

of size
ffiffiffi
d
p

each (w.l.o.g. we assume that d is a square number and
ffiffiffi
d
p

divides r). Then, for

each alphabet symbol s, its respective [s - d, s + d] interval wholly covers Hð
ffiffiffi
d
p
Þ intervals

Ih, and also can partially cover at most two Ih intervals. Two kinds of lists are computed in the

preprocessing, LB (for ‘‘boundary’’ cases) and LC (for ‘‘core’’). For each character tj from text

T, at most 2ð
ffiffiffi
d
p
� 1Þ lists LB[pi] are extended with one entry, the text position j, and those lists

correspond to the pattern alphabet symbols from the partially covered intervals Ih. For

example, if R ¼ f0; . . .; 29g;
ffiffiffi
d
p
¼ 3; and tj = 10, then the [tj - d, tj + d] interval is [1, 19],

and j is appended to the lists LB[1], LB[2], LB[18], LB[19], assuming that P contains all the

symbols 1, 2, 18, and 19 (if not, the respective lists are not built at all). Figure 1 illustrates.

Similarly, each character tj also causes to append j to Oð
ffiffiffi
d
p
Þ lists LC½pi=

ffiffiffi
d
p
�; those that

correspond to the Ih intervals wholly covered by [tj - d, tj + d].

More formally (and still assuming for simplicity that d is a square number) text position

j is appended to the lists LB[pi] for

pi 2 ftj � d. . .dðtj � dÞ=
ffiffiffi
d
p
e
ffiffiffi
d
p
� 1; bðtj þ dþ 1Þ=

ffiffiffi
d
p
c
ffiffiffi
d
p

. . .tj þ dg:

Likewise, j is appended to the lists LC½pi=
ffiffiffi
d
p
� for

pi=
ffiffiffi
d
p
2 fdðtj � dÞ=

ffiffiffi
d
p
e. . .bðtj þ dþ 1Þ=

ffiffiffi
d
p
c � 1g:

Fig. 1 Oð
ffiffiffi
d
p

nÞ time preprocessing. The current text symbol is tj = 10, and
ffiffiffi
d
p
¼ 3: Its d-interval spans

over the dark-shaded and light-shaded cells. The light-shaded symbols (1, 2, 18, 19) are the ‘‘boundary’’
cases corresponding to the two partially covered intervals, and j is appended to the corresponding LB lists.
The dark-shaded intervals (1, 2, 3, 4, 5) are the fully covered ‘‘core’’ cases, and j is appended to the
corresponding LC lists

Inf Retrieval (2008) 11:335–357 339

123

Clearly, the preprocessing is done in Oð
ffiffiffi
d
p

nÞ worst case time and in Oðn
ffiffiffi
d
p

rP=rÞ average

time.

The search is again based on a binary search routine, but in this variant we binary search

two lists: LB[pi] and LC½pi=
ffiffiffi
d
p
�; as the d-matches to pi may be stored either at some LB, or

at some LC list. This increases both the average and worst case search cost only by a

constant factor.

We can generalize this idea and have a preprocessing/search trade-off. Namely, we may

have k levels, turning the preprocessing cost into O(kd1/kn), for the price of a multiplicative

factor k in the search. For k = log(d) the preprocessing cost becomes O(nlog(d)), and both

the average and worst case search times are multiplied by log(d) as well.

3.3.2 O(n) time preprocessing

We partition the alphabet into dr=de disjoint intervals of width d. With each interval a list

of character occurrences will be associated. Namely, each list L½i�; i ¼ 0. . .dr=de � 1;
corresponds to the characters id…min{(i + 1) d - 1, r - 1}. During the scan over the text

in the preprocessing phase, we append each index j to up to three lists: L[k] for such k that k
d B tj B (k + 1) d - 1, L[k - 1] (if k - 1 C 0), and L[k + 1] (if k þ 1�dr=de � 1). Note

that no character from the range [tj - d…tj + d] can appear out of the union of the three

corresponding intervals. Such preprocessing clearly needs O(n) space and time in the worst

case.

Now the search algorithm runs the binary search over the list L[k] for such k that kd B pi

B (k + 1)d - 1, as any j such that tj =dpi must have been stored at L[k]. Still, the problem

is there can be other text positions stored on L[k] too, as the only thing we can deduce is

that for any j in the list L[k], tj is (2d - 1)-match to pi. To overcome this problem, we have

to verify if tj is a real d-match. If tj =dpi, we read the next value from L[k] and continue

analogously. After at most a + 1 read indexes from L[k] we either have found a d-match

prolonging the matching prefix, or we have fallen off the (a + 1)-sized window. As a

result, the worst case time complexity is Oðnþ jMjðlogðnÞ þ aÞÞ: The average time in this

variant becomes O(n + nad/rlog(n)). Algorithm 1 shows the complete pseudo code.

340 Inf Retrieval (2008) 11:335–357

123

3.4 Improved algorithm for large a

In this section we present a variant of the row-wise SDP algorithm, particularly suited to

problem instances with large a.

In the preprocessing, we again compute lists L[pi] = {j|tj =dpi}. But now we also store

2bn/(a + 1)c pointers to each list. In each list, for each j = k (a + 1) where k [0…n/

(a + 1) - 1, there are two pointers, showing the leftmost and the rightmost item with the

value from the interval [j, j + a + 1]. These pointers are kept in two 2-dimensional arrays,

named L andR: More formally, the elements of L andR are defined in the following way:

L½pi; k� ¼ minfjjj 2 L½pi�AND j 2 ½kðaþ 1Þ. . .ðk þ 1Þðaþ 1Þ�g
R½pi; k� ¼ maxfjjj 2 L½pi�AND j 2 ½kðaþ 1Þ. . .ðk þ 1Þðaþ 1Þ�g

assuming the minimum and the maximum is seeked over a non-empty slice of a list L[pi].

If this is not the case, the respective pointers are set to null. In total, the extra preprocessing

cost is O(dn + rPn/a) in time, and O(rPn/a) space, in the worst case.

The search is basically prefix prolongation. A specific trait of the algorithm is that

during the search we are not interested in finding all matching prefixes: what is enough are

(at most) two prefixes per an (a + 1)-sized chunk of each row (except for the last row,

where we perform an extra scan, to be described later). The end positions of those prefixes

are maintained in two auxiliary arrays, CL and CR; of size bn/(a + 1)c each. They are

initialized with the exact copy of the rows L½p0� and R½p0�; respectively.

Now we assume the matrix row i we are in is at least 1. W.l.o.g. we also assume that we are

in the column at least a + 1. For each k [1…n/(a + 1) - 1 we readL½pi; k� andR½pi�1; k �
1�; and if both are non-null andL½pi; k� � R½pi�1; k � 1� is at most a + 1, then we have found

a relevant prefix, which we write to CL: If not, we check ifL½pi; k� � L½pi�1; k�[0 (note that

this difference cannot be greater than a + 1, so testing for a positive difference of non-null

values is all we need). Affirmative answer again corresponds to finding a relevant prefix (and

requires updating CL½k�), but a negative one means that we have to look for a prefix pro-

longation somewhere further in the current chunk. In such case, we perform a binary search

over the fragment of the list L[pi] with the boundaries kept in the pointers L½pi; k� and

R½pi; k�; to find the smallest value being greater than L½pi�1; k�: The interval has as most

a + 1 items, so the binary search cost is O(log(a)). If this results in a failure (which happens

only if the considered interval is empty), it means that we do not have a prefix ended in the

current chunk, and CL½k� should be updated with a null value.

Analogously we proceed at the right boundary of each chunk. The invariant for the procedure

is that after processing a row i, all the end positions of p0…pi in the text chunk tk(a+1)…t(k+1)(a+1)

are exactly thoseCL½k� � j�CR½k� for whose tj d-matches pi, assuming non-null values of CL½k�
and CR½k�: If either CL½k� or CR½k� is null, there are no prefixes ending in the given text chunk.

As mentioned, the last row requires an extra scan, to find all the d-matches between the

positions stored in CL½k� and CR½k�; for all k [0…n/(a + 1) - 1. Note that it is possible that

CL½k� ¼ CR½k� or CR½k� ¼ CL½k þ 1�; so we must be careful not to count duplicates more than

once. This stage needs O(n) time, i.e., is always dominated by the preprocessing time.

The overall search complexity can be bounded by O(n + nm log(a)/a), but a closer look

tells we can bound it better: with Oðnþ nmlogðajMj=ðnmÞÞ=aÞ: Indeed, a single chunk

may have up to a + 1 items over which we binary search, but in total there are only jMj
matches in the matrix, which can be much less than nm. This means that on average there

are OðajMj=ðnmÞÞ items in a chunk, and equal number of matches in chunks leads also to

the worst overall case, which is trivially implied from the convexity of the log function.

Inf Retrieval (2008) 11:335–357 341

123

On the theoretical side, we note that the achieved worst-case complexity dominates over

existing algorithms on the pointer machine (where, e.g., bit-parallelism is forbidden), in the

case jMj ¼ OðnmÞ:

4 Column-wise sparse dynamic programming

In this section we present a column-wise variant. This algorithm runs in O(n + nad/r) and

OðnþminðjMja; nmÞÞ average and worst case time, respectively.

The algorithm processes the dynamic programming matrix column-wise. Let us define

last prefix occurrenceD as

Di;j ¼
j0 max j0 � jjp0. . .pi ¼a

d th. . .tj0

�a� 1 otherwise

�

ð2Þ

Note that D0;j ¼ j if p0 =dtj. Note also that Di;j is just an alternative definition of Di,j

(Eq. 1). The pattern matching task is then to report every j such that Dm�1;j ¼ j: As seen,

this is easy to compute in O(nm) time. In order to do better, we maintain a list of window
prefix occurrencesWj that contains for the current column j all the rows i such that

j�Di;j� a where i 2 W j:
Assume now that we have computed D and W up to column j - 1, and want to

compute D and W for the current column j. The invariant is that i 2 Wj�1 iff j�
Di;j�1� aþ 1: In other words, if i 2 Wj�1 and j0 ¼ Di;j�1; then p0. . .pi ¼a

d th. . .tj0 for some

h. Therefore, if tj =dpi+1, then the (d,a)-matching prefix from Di;j�1 can be extended to text

position j and row i + 1. In such case we update Diþ1;j to be j, and put the row number

i + 1 into the listWj: This is repeated for all values inW j�1: After this we check if also p0

d-matches the current text character tj, and in such case set D0;j ¼ j and insert j into Wj:
Finally, we must put all the values i 2 W j�1 to W j if the row i was not already there, and

still it holds that j�Di;j� a: This completes the processing for the column j.
Algorithm 2 gives the code. Note that the additional space we need is just O(m), since

only the values for the previous column are needed for D andW: In the pseudo code this is

implemented by using W and W0 to store the prefix occurrences for the current and

previous column, respectively.

342 Inf Retrieval (2008) 11:335–357

123

The average case running time of the algorithm depends on how many values there are

on average in the list W: Similar analysis as in Sect. 3 can be applied to show that this is

O(ad/r). Each value is clearly processed in constant worst case time, and hence the

algorithm runs in O(n + nad/r) average time. In the worst case the total length of the lists

for all columns is OðminðjMja; nmÞÞ; and therefore the worst case running time is Oðnþ
minðjMja; nmÞÞ; since every column must be visited. The preprocessing phase only needs

to initialize D; which takes O(m) time.

Finally, note that this algorithm can be seen as a simplification of the algorithm in

Mäkinen et al. (2005, Sect. 5.4). We avoid the computation of M in the preprocessing

phase and traversing it in the search phase. The price we pay is a deterioration in the worst

case time complexity, but we achieve simpler algorithm that is efficient on average. This

also makes the algorithm alphabet independent.

5 Simple algorithm

In this section we will develop a simple algorithm that in practice performs very well on

small (d,a). The algorithm inherits the main idea from Algorithm 1, and actually can be

seen as its brute-force variant. The algorithm has two traits that distinguish it from

Algorithm 1: (i) the preprocessing phase is interweaved with the searching (lazy evalua-

tion); (ii) binary search of the next qualifying match position is replaced with a linear scan

in an a + 1 wide text window. These two properties make the algorithm surprisingly

simple and efficient on average, but impose an O(a) multiplicative factor in the worst case

time bound.

The algorithm begins by computing a list L of d-matches for p0:

L0 ¼ fjjtj ¼d p0g:

This takes O(n) time (and solves the (d,a)-matching problem for patterns of length 1). The

matching prefixes are then iteratively extended, subsequently computing lists:

Li ¼ fjjtj ¼d pi AND j0 2 Li�1 AND 0\j� j0 � aþ 1g:

List Li can be easily computed by linearly scanning list Li-1, and checking if any of the

text characters tj0þ1. . .tj0þaþ1; for j [Li-1 d-matches pi. This takes O(a|Li-1|) time. Clearly,

in the worst case the total length of all the lists is
P

i Li ¼ jMj; and hence the algorithm

runs in Oðnþ ajMjÞ worst case time.

With one simple optimization the worst case can be improved to OðminfajMj; nmgÞ
(improving also the average time a bit). When computing the current list Li, Simple

algorithm may inspect some text characters several times, because the subsequent text

positions stored in Li-1 can be close to each other, in particular, they can be closer than

a + 1 positions. In this case the a + 1 wide text windows will overlap, and same text

positions are inspected more than once. Adding a simple safeguard to detect this, each

value in the list Li can be computed in O(a) worst case time, and in O(1) best case time. In

particular, if jMj ¼ OðnmÞ; then the overlap between the subsequent text windows is O(a),

and each value of Li is computed in O(1) time. This results in O(nm) worst case time. The

average case is improved as well. Algorithm 3 shows the pseudo code, including this

improvement.

Inf Retrieval (2008) 11:335–357 343

123

Consider now the average case. List L0 is computed in O(n) time. The length of this list

is O(nd/r) on average. Hence the list L1 is computed in O(and/r) average time, resulting in

a list L1, whose average length is O(nd/r 9 ad/r). In general, computing the list Li takes

OðajLi�1jÞ ¼ Oðnaiðd=rÞiÞ ¼ Oðnðad=rÞiÞ

average time. This is exponentially decreasing if ad/r \ 1, i.e., if a\ r/d, and hence,

summing up, the total average time is O(n).

5.1 Sublinear average case

In this section we show how the average case time of Simple can be improved. The basic

observation is that while building the list L0 not all d-matches need to be inserted, but

rather only those that have hope to be extended to a complete match of the whole pattern.

In other words, some of the d-matches can be skipped. This can be achieved using Boyer–

Moore–Horspool (BMH) (Horspool 1980) strategy. We therefore build the list L0 using the

BMH approach (filtering), and then continue with plain Simple to compute the lists

L1…m-1. This can be seen as a verification phase.

In what follows, we build L0 scanning the text backwards. Lists L1…m-1 are built as

before, using Simple. We first need the following definition:

S½c� ¼ minfi;mjpi ¼d cg:

This implies that if S[tj] = m, then pS½tj � ¼d tj. This gives us a shifting rule. Assume now

that p0 is aligned with tj. We then execute the following algorithm:

1. If |p0 - tj| B d, then put j into the list L0.

2. Check tj-a-1…j-1 from right to left, computing s = argmini{S[tj-i]|i [[1…a + 1]}. If

several values of i give the same minimum shift value, return the smallest i.
3. Shift the pattern with j / j-(S[tj-s] + s) to align tj-s with pS½tj�s�.
4. If j C 0, then go to 1.

5. Pass the computed list L0 to Simple, and compute lists L1…m-1.

The core of the algorithm is the step 2. We scan the text window tj-a-1…j-1. If some

occurrence overlaps this window, then some pattern character must d-match one of the

characters in this window. We therefore compute the smallest shift to align some

d-matching pattern character to one of these text characters. If such character does not

exist, then the pattern occurrence cannot overlap this window, and the whole pattern is

shifted past the window, i.e., the shift is m + a + 1 characters.

344 Inf Retrieval (2008) 11:335–357

123

The text scanning is performed backwards, as we want to put the starting positions

(instead of ending positions) of the possible occurrences into the list L0. The only

reason for this is to be compatible with Simple algorithm. Algorithm 4 gives the pseudo

code.

As opposed to exact BMH matching, in this variant any shift requires O(a) prior

character accesses. The average pattern shift can be lower-bounded by O(min(m,1/q)),

where q is the probability of a d-matching symbol in (a + 1)-window, that is, q = 1 - (1-

d/r)a+1. This probability is Oðaþ1
r=dÞ if a + 1 \ r/d. Thus the average time for large m and

small a is O(na2d/r), which also dominates the verification phase.

6 Non-deterministic finite automata

In this section we present an algorithm based on non-deterministic finite automaton.

Preliminary version of this algorithm appeared in Fredriksson and Grabowski (2006). We

first review that algorithm and then improve its average case running time. The problem of

the algorithm in Navarro and Raffinot (2003) is that it needs m + (m - 1)a bits to rep-

resent the search state. Our goal is to reduce this to O(mlog(a)), and hence the worst case

time to OðndðmlogðaÞÞ=weÞ:
At a very high level, the algorithm can be seen as a novel combination of Shift-And and

Shift-Add algorithms (Baeza-Yates and Gonnet 1992). The ‘automaton’ has two kinds of

states: Shift-And states and Shift-Add states. The Shift-And states keep track of the pattern

characters, while the Shift-Add states keep track of the gap length between the characters.

The result is a systolic array rather than automaton; a high level description of a building

Fig. 2 A building block for a systolic array detecting d-matches with a-bounded gaps

Inf Retrieval (2008) 11:335–357 345

123

block for character pi is shown in Fig. 2. The final array is obtained by concatenating one

building block for each pattern character. We call the building blocks counters.

To efficiently implement the systolic array in sequential computer, we need to represent

each counter with as few bits as possible while still being able to update all the counters

bit-parallelly.

We reserve ‘ ¼ dlog2ðaþ 1Þe þ 1 bits for each counter, and hence we can store bw/‘c
counters into a single machine word. We use the value 2‘-1 - (a + 1) to initialize the

counters, i.e., to represent the value 0. (This representation has been used before, e.g., in

Crochemore et al. (2005).) This means that the highest bit (‘th bit) of the counter

becomes 1 when the counter has reached a value a + 1, i.e., the gap cannot be extended

anymore. Hence the lines 3–4 of the algorithm in Fig. 2 can be computed bit-parallelly

as

C C þ ðð�C � ð‘� 1ÞÞ& mskÞ;

where msk selects the lowest bit of each counter. That is, we negate and select the highest

bit of each counter (shifted to the low bit positions), and add the result to the original

counters. If a counter value is less than a + 1, then the highest bit position is not activated,

and hence the counter gets incremented by one. If the bit was activated, we effectively add

0 to the counter.

To detect the d-matching characters we need to preprocess a table B, so that B[c] has

i‘th bit set to 1, iff |pi - c| B d. We can then use the plain Shift-And step:

D0 ððD� ‘Þj1Þ& B½tj�;

where we have reserved ‘ bits per character in D as well. Only the lowest bit of each field

has any significance, the rest are only for aligning D and C appropriately. The reason is that

a state in D may be activated also if the corresponding gap counter has not exceeded a + 1.

In other words, if the highest bit of a counter in C is not activated (the gap condition is not

violated), then the corresponding bit in D should be activated:

D D0jðð �C � ð‘� 1ÞÞ& mskÞ:
The only remaining difficulty to solve is how to reinitialize (bit-parallelly) some subset

of the counters to zero, i.e., how to implement the lines 1–2 of the algorithm in Fig. 2. The

bit vector D0 has value 1 in every field position that survived the Shift-And step, i.e., in

every field position that needs to be initialized in C. Then

C C & �ðD0 	 ðð1� ‘Þ � 1ÞÞ

C CjðD0 	 ðð1� ð‘� 1ÞÞ � ðaþ 1ÞÞÞ

first clears the corresponding counter fields, and then copies the initial value 2‘-1 -

(a + 1) to all the cleared fields.

This completes the algorithm. Algorithm 5 gives the pseudo code. Algorithm 5 runs in

O(n) worst case time, if mðdlog2ðaþ 1Þe þ 1Þ�w: Otherwise, several machine words are

needed to represent the search state, and the time grows accordingly. However, by using

the well-known folklore idea, it is possible to obtain O(n) average time for long patterns

not fitting into a single word by updating only the ‘‘active’’ (i.e., non-zero) computer

words. This works in O(n) time on average as long as d/(r(1 - d/r)a+1) = O(w/log(a)). The

preprocessing takes Oðmþ ðrþ drPÞdmlogðaÞ=weÞ time, which is Oðmþ ðrþ dmin

fm; rgÞdmlogðaÞ=weÞ in the worst case.

346 Inf Retrieval (2008) 11:335–357

123

6.1 Sublinear average case

We note that the idea (Navarro and Raffinot 2003) of combining the forward matching

automaton with BNDM (Navarro and Raffinot 2000) works with our algorithm as well. We

briefly sketch the idea.

Denote the pattern in reverse as Pr. The set of its suffixes is fPr
i...m�1j0� i\mg (note

that this corresponds to the prefixes of the original pattern). The minimum length of a

matching text substring is m. Assume that we are scanning the text window

tj…j+m-1backwards. The invariant is that all occurrences that start before the position j
are already reported. The algorithm matches the characters of the current window

(backwards) as long as any of the suffixes (d,a)-match, or we reach the beginning of the

window. The algorithm remembers the longest suffix found from the window. The

window is then shifted so that its starting position will become aligned with the last

symbol of that suffix. This is the position of the next possible pattern occurrence. If the

length of that longest suffix was ‘, the next window to be searched is tj+m-‘…j+m-1+m-‘.

This process is repeated until the whole text is scanned. However, if we reached the end

of the window, then it is possible that there is an occurrence starting at the text position

j, which must be verified.

To implement the above algorithm efficiently, we use Algorithm 5 for both the

backward matching and verification. Consider first the backward matching phase. We

build the automaton using Pr. For each window all the states are initialized to be

active, in other words, the states corresponding to each of the suffixes of Pr is ini-

tialized to be active. This correctly models that we want to recognize every suffix of Pr

ending at tj+m-1. We also must remove the self-loop from the automaton, since the

automaton is used for recognition, not for searching, i.e., the main Shift-And step

becomes

D0 ðD� ‘Þ& B½c�:

To detect if some state is still active, we just check if D is not zero.

To verify the occurrences, we again use Algorithm 5 to scan the text from position j
onwards using the original pattern P. Again the self-loop is removed from the initial state

Inf Retrieval (2008) 11:335–357 347

123

(which is the only state initialized to be active), hence the vector D must become zero after

m + (m - 1)a steps, which is the maximum length of a pattern occurrence. This signals

the end of the verification procedure.

The analysis is similar as that of plain BNDM. The differences are that we must always

scan at least a characters in each window, and that the probability of a character match is

not 1/r, but q = 1 - (1 - d/r)a+1, hence the average time becomes O(nalog1/q(m)/m) for

mlog(a) = O(w). Multiplying by dmlogðaÞ=we we obtain O(nalog(a)log1/q(m)/w) asymp-

totically for large m. For m larger than w/log(a) we could also use only pattern prefixes of

length w/log(a) in the backward search phase, resulting in O(nalog(a)log1/q(w/log(a))/w)

average time.

The worst case time of this algorithm becomes quadratic, as in the worst case the length

of the shift is always O(1), i.e., each text character is scanned O(m) times. However, there

are some ‘‘standard tricks’’ that can be applied to combine the backward and forward

(verification) scans so that either scans no text character twice (Crochemore et al. 1994;

Navarro and Raffinot 2003). These work with our method as well. A somewhat simplified

solution which achieves O(1) accesses to any text character in the worst case is as follows.

Assume that for the current window the backward scan touched more than m/2 text

characters (i.e., it is possible, but not necessary, that the shift is less that m/2 characters). In

this case we switch to forward matching. The window starts from the text position j, which

is the next possible starting position of an occurrence. We search with the forward algo-

rithm the text window tj…j+m+m+(m-1)a, and then again switch to backward scanning,

starting with text window tj+m+1…j+2m. Hence the backward scan never retraverses same

text characters. The same is easily achieved for the forward scanning by saving the last

scanned text position and the corresponding state vectors C and D, and resuming the search

in the case of overlapped windows. This preserves the good worst case time of Algorithm

5. A more sophisticated solution is described in Navarro and Raffinot (2003), but the final

result is the same.

7 Handling character classes and general gaps

We now consider the case where the gap limit can be of different length for each pattern

character, and where the d-matching is replaced with character classes, i.e., each pattern

character is replaced with a set of characters.

7.1 Character classes

In the case of character classes pi , R, and tj matches pi if tj [pi. For Algorithms 2 and 3

we can preprocess a table C[0…m - 1][0…r - 1], where C[i][c] := c [pi. This requires

O(rm) space and O(r
P

i|pi|) time, which is attractive for small r, such as protein alphabet.

The search algorithm can then use C to check if tj [pi in O(1) time. For large alphabets we

can use, e.g., hashing or binary search, to do the comparisons in O(1) or in O(log(|pi|))

time, respectively.

Algorithm 1 is a bit more complicated, since we need to have M preprocessed. First

compute lists L0[c] = {i | c [pi}. This can be done in one linear scan over the pattern. Then

348 Inf Retrieval (2008) 11:335–357

123

list L[i] is defined as L[i] = {j | tj [pi}. This can be computed in one linear scan over the

text appending j into each list L[i] where i [L0 [tj]. The total time is then O(nd), where we

can consider d as the average size of the character classes. The search algorithm can now

be used as is, the only modification being that where we used L[pi] previously, we now use

L[i] instead (and the new definition of L).

7.2 Negative and range-restricted gaps

We now consider gaps of the form g(ai,bi), where ai denotes the minimum and bi the

maximum (ai B bi) gap length for the pattern position i. This problem variant has

important applications, e.g., in protein searching (see Mehldau and Myers 1993; Myers

1996; Navarro and Raffinot 2003). General gaps were considered in Navarro and Raffinot

(2003) and Pinzón and Wang (2005). This extension is easy or even trivial to handle in all

our algorithms, i.e., it is equally easy to check if the formed gap length satisfies g(ai,bi) as it

is to check if it satisfies g(0,a). The column-wise sparse dynamic programming is a bit

trickier, but still adaptable. Yet a stronger model (Mehldau and Myers 1993; Myers 1996)

allows gaps of negative lengths, i.e., the gap may have a form g(ai,bi) where ai \ 0 (it is

also possible that bi \ 0). In other words, parts of the pattern occurrence can be over-

lapping in the text.

Consider first the situation where for each g(ai,bi): (i) ai C 0; or (ii) bi B 0. In either

case we have ai B bi. Handling the case (i) is just what our algorithms already do. The case

(ii) is just the dual of the case (i), and conceptually it can be handled in any of our dynamic

programming algorithms by just scanning the current row from right to left, and using

g(-bi - 2, -ai - 2) instead of g(ai,bi).

The general case where we also allow ai \ 0 \ bi is slightly trickier. Basically, the only

modification for Algorithm 1 is that we change all the conditions of the form 0 B g B a,

where g is the formed gap length for the current position, to form ai B g B bi. Note that

this does not require any backtracking, even if ai \ 0.

Algorithm 3 can be adapted as follows. For computing the list Li, the basic algo-

rithm checks if any of the text characters tj0þ1. . .tj0þaþ1; for j0 [Li-1 matches pi. We

modify this to check the text characters tj0þaiþ1. . .tj0þbiþ1: This clearly handles correctly

both the situations bi B 0 and ai \ 0 \ bi. The scanning time for row i becomes now

O((bi - ai + 1) |Li-1|). The average time is preserved as O(n) if we now require that

(bi - ai + 1)d/r \ 1. The optimization to detect and avoid overlapping text windows

clearly works in this setting as well, and hence the worst case time remains Oðnþ
minfðb� aþ 1ÞjMj; nmgÞ; where for simplicity we have considered that the gaps are

of the same size for all rows.

8 Transposition invariance

In this section we consider transposition invariance. In this case pattern P (d,a)-matches the

text substring ti0 ti1 ti2 . . .tim�1
; if pj þ s ¼d tij for j [{0, …, m - 1}, where ij \ ij+1, ij+1 -

ij B a + 1 and s [{-r + 1…r - 1}. That is the condition is the same as before, but we

now allow that the symbols can be ‘‘transposed’’ by some constant value. Now we also

assume that the (integer) alphabet R is not arbitrary, but its symbols form a continuous

Inf Retrieval (2008) 11:335–357 349

123

range 0…r - 1. In MIR context transposition invariance means that the pattern and its

occurrence in text can be in different key.

8.1 Transposition invariant Simple

It appears that our Simple algorithm can be modified to this setting relatively straight-

forwardly. We again maintain a list Li of text positions where the pattern prefix p0…pi

matches the text substring, but this time we must also maintain the set of possible trans-

positions for each such text position. First notice that for any symbols p and t the

transposition s = t - p makes the symbols match exactly. Taking the d condition into

account, the set of possible transpositions becomes {s - d…s + d}, i.e., for any single

pair of symbols there are exactly 2d + 1 allowed transpositions.

In the following we make the assumption that 2d + 1 B w, where w is the number of

bits in a machine word. In MIR applications this is practically never a restriction. We

represent the set of possible transpositions as a pair ðs; T Þ; where s = t - p (the base) and

T is the set of the 2d + 1 possible offsets to the value s. More precisely, T is a bitvector of

2d + 1 bits. If the kth bit of T is set, then the transposition s + k - d is valid.

Assume now that we have transpositions ðs1; T 1Þ and ðs2; T 2Þ; and we want to compute

the transposition ðs; T Þ that agrees with both, i.e.,

ðs; T Þ ¼ ðs1; T 1Þ \ ðs2; T 2Þ:

If s1 = s2 then

ðs; T Þ ¼ ðs2; T 1 & T 2Þ;

where the bit-wise & operation effectively intersects the two sets. If |s1 - s2| [2d, then

the intersection is an empty set, and we just set T to zero. Otherwise, if |s1 - s2| B 2d the

intersection can be non-empty. To compute the intersection we must first bring T 1 and T 2

into the same base. This is easily achieved by shifting the bitvectors. Assume that s1 \ s2.

Then

ðs; T Þ ¼ ðs2; ðT 1 � ðs2 � s1ÞÞ& T 2Þ:

Symmetrically, if s1 [s2 we obtain

ðs; T Þ ¼ ðs2; ðT 1 � ðs1 � s2ÞÞ& T 2Þ:
Let us now consider extending a (possible) prefix match. Let the current pattern position

be i, and text position j. The set of candidate transpositions for this location is (tj -

pi,1
2d+1) (we use exponentiation to denote bit-repetition). This location is a prefix match, if

in the previous row there are matching prefixes within a-window, and their corresponding

transpositions agree with the pair (tj - pi, 12d+1). Let these transpositions be

ðs1; T 1Þ; . . .; ðsk; T kÞ; k� aþ 1: Then the set of transpositions extending the prefix match

to position (i,j) is

ððtj � pi; 1
2dþ1Þ \ ðs1; T 1ÞÞ [� � � [ððtj � pi; 1

2dþ1Þ \ � � � ðsk; T kÞÞ;

where the union [is simply computed as bit-wise or of the bitvectors T ; as they are all

brought to the same base by the intersection operation. Hence, assuming that 2d + 1 B w,

this computation takes O(a) time. If the resulting set is non-empty, we put the position j
into the list Li, just as in the Simple algorithm without transposition invariance. Algo-

rithm 6 gives the complete pseudo code.

350 Inf Retrieval (2008) 11:335–357

123

The worst case time of this algorithm is Oðnmadd=weÞ: As in plain Simple, computing

the list Li takes O(a|Li-1|) time (assuming that dd=we ¼ Oð1Þ). However, this time the lists

are longer on average. Clearly |L0| = n, since pattern prefix of length 1 matches every text

position. Hence computing L1 costs O(an) time, and the resulting list is of length |L1| =

O(nad/r), since the probability that two intervals intersect is upper-bounded by (4d + 1)/r.

In general, assuming that ad/r \ 1, the ith list is of length

jLij ¼ Oðnðad=rÞiÞ:

This is exponentially decreasing with the above assumption. Thus the average time

becomes O(an).

8.2 Transposition invariant DP

We now present a basic dynamic programming solution that has better worst case

complexity than the Simple algorithm. The algorithm (conceptually) maintains a matrix

D0…m-1,0…n-1 (but only a + 2 columns are active at any time), where each Di,j is a

binary vector of size 2r + 1. If the kth item of this vector is set, that is, iff Di,j,k = 1,

then p0…pi matches th…tj, for some h, with transposition k - r. Let us define a helper

matrix T as

T i;j;k ¼ 1jk 2 ½tj � pi þ r� d. . .tj � pi þ rþ d�:

Now D0,j is easy to compute: D0;j ¼ T 0;j: In general, Di,j,k depends on the values of the

a + 1 sized window of the previous row:

Di;j;k ¼ 1jT i;j;k ¼ 1 AND 9j0 : 0\j� j0 � aþ 1 AND Di�1;j0;k ¼ 1:

The (almost) naı̈ve implementation of the above recurrence would result in algorithm with

O(nmad) running time. We first remove the O(a) factor of the trivial algorithm, then

improve the average case, and finally reduce the O(d) factor using bit-parallelism.

Inf Retrieval (2008) 11:335–357 351

123

Trivial algorithm implementing our recurrence for Di,j,k would need to scan a + 1

vectors from the previous row. This can be avoided by using counters maintaining the total

number of ‘‘voted’’ transpositions for each (a + 1)-window:

Ci;j;k ¼
Xj

j0¼j�a

Di;j0;k:

Thus we can rewrite our main recurrence as

Di;j;k ¼ 1jT i;j;k ¼ 1 AND Ci�1;j�1;k [0:

The counters can be easily updated in O(1) time per value by incremental computation:

Ci;j;k ¼ Ci�1;j;k � Di�a�1;j;k þ Di;j�1;k:

This gives us O(nmd) worst case time. Note that only O(mar) space is needed for D since

only the past O(a) columns are needed at any time. This could be reduced to O(mad) by

using the technique we used in Sect. 8.1. Similarly C takes only O(mr) space, since only

one column of counters is needed to be active at any time. Finally, T is not needed

explicitly at all, we used it only as a tool for the presentation. Algorithm 7 gives the pseudo

code, omitting initialization of the arrays, which are assumed to be all zero before the main

loop. It also implements a cut-off trick discussed next.

8.2.1 Cut-off

We make the following observation: if Di…m-1,j-a…j,k = 0, for some i, j and all k, then

Di+1…m-1, j+1,k = 0. This is because there is no way the recurrence can introduce any other

value for those matrix cells. In other words, if p0…pi does not (d,a)-match th. . .tj�j0 for any

j0 = 0…a, then the match at the position j + 1 cannot be extended to p0…pi+1. This can be

utilized by keeping track of the highest row number top of the current column j such that

352 Inf Retrieval (2008) 11:335–357

123

Dtop+1…m-1,j-a…j = 0, and computing the next column only up to row top + 1. For this

sake we maintain an array Cco so that Ccoi,j gives the total number of ‘‘voted’’ transpo-

sitions for the last (a + 1)-window:

Ccoi;j ¼
X

k

Ci;j;k:

This is again trivial to incrementally maintain in O(1) time per computed D value. Hence

after the row top for the column j is processed, the new value of top is computed as

top ¼ argminifCcoi...top;j ¼ 0g:

Now consider the average time of this algorithm. Computing a single cell Di,j costs O(d)

time. Maintaining top costs only O(n) time in total, since it can be incremented only by one

per text symbol, and the number of decrements cannot be larger than the number of

increments. The average time of this algorithm also depends on the average value of top,

i.e., the total time is O(n avg(top) d). For p0 the probability of a match for any text position

is obviously 1 (and top is at least 1). For rows i [0 the probability that T i;j intersects with

Di-1,j-1…j-a-1 is upper bounded by

q ¼ 1� ð1� ðð4dþ 1Þ=rÞÞaþ1:

Hence the expected length of a prefix match is at most

X1

i¼0

qi ¼ 1

ð1� 4dþ1
r Þ

aþ1
;

i.e., avgðtopÞ ¼ O 1

ð1�d=rÞaþ1

� �
; and the average time becomes O n d

ð1�d=rÞaþ1

� �
: It is easy to

show that this is O n d
1�dðaþ1Þ=r

� �
if a + 1 \r/d.

8.2.2 Bit-parallel algorithm

We note that the O(d) factor can be easily reduced to OðddlogðaÞ=weÞ; which is practically

O(1) in MIR applications. To see this, note that the counter values cannot exceed a + 1, so

we can pack O(w/log(a)) counters into a single computer word. All the inner loops

(involving 2d + 1 iterations) can then be computed parallelly, updating O(w/log(a))

counters in O(1) time. The only non-trivial detail is the computation of minima of two sets

of counters (parallelization of the line 19 of Algorithm 7), but the solution exists (Paul and

Simon 1980), and is reasonably well-known. Note that for realistic assumptions (for MIR

data) of (4d + 1)a\ cr, for some constant c \ 1, and for dlog(a) = O(w), this variant

achieves O(n) time on average. However, in practice d is often so small that the benefit of

this parallelization is negligible.

9 Experimental results

We have run experiments to evaluate the performance of our algorithms. The experiments

were run on Pentium4 2 GHz with 512 MB of RAM, running GNU/Linux 2.4.18 operating

system. We have implemented all the algorithms in C, and compiled with icc 7:0:
We first experimented with (d,a)-matching, which is an important application in MIR.

For the text we used a concatenation of 7,543 music pieces, obtained by extracting the pitch

values from MIDI files. The total length is 1,828,089 bytes. The pitch values are in the range

Inf Retrieval (2008) 11:335–357 353

123

[0…127]. This data is far from random; the six most frequent pitch values occur 915,082

times, i.e., they cover about 50% of the whole text, and the total number of different pitch

values is just 55. A set of 100 patterns were randomly extracted from the text. Each pattern

was then searched for separately, and we report the average user times. Figure 3 shows the

timings for different pattern lengths. The timings are for the following algorithms:

DP: Plain Dynamic Programming algorithm (Crochemore et al. 2002);

DP Cut-off: ‘‘Cut-off’’ version of DP (as in Cantone et al. (2005b);

SDP RW: Basic Row-Wise Sparse Dynamic Programming;

SDP RW fast: Binary search version of SDP;

SDP RW fast PP: linear preprocessing time variant of SDP RW fast (Algorithm 1);

SDP CW: Column-Wise Sparse Dynamic Programming (Algorithm 2);

Simple: Simple algorithm (Algorithm 3);

BMH + Simple: BMH followed by Simple algorithm (Algorithm 4);

BP Cut-off: Bit-Parallel Dynamic Programming (Fredriksson and Grabowski 2006);

NFA a: Non-deterministic finite automaton, forward matching variant (Navarro and

Raffinot 2003), using O(a) bits per symbol;

NFA log(a): Non-deterministic finite automaton, forward matching variant (Algo-

rithm 5), using O(log(a)) bits per symbol.

We also implemented the SDP RW variant with Oð
ffiffiffi
d
p

nÞ worst case preprocessing time,

but this was not competitive in practice, so we omit the plots.

 0.01

 0.1

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

(1,2)-matching

 0.1

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

(2,4)-matching

 0.01

 0.1

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=16, (1,α)-matching

 0.1

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=32, (2,α)-matching

DP
DP Cut-off

SDP RW
SDP RW fast

SDP RW fast PP
SDP CW

Simple
BMH+Simple

BP Cut-off
NFA α

NFA log(α)

Fig. 3 Running times for (d,a)-matching in seconds for m = 8…128 (top) and for a = 1…8 (bottom). Note
the logarithmic scale

354 Inf Retrieval (2008) 11:335–357

123

SDP is clearly better than DP, but both show the dependence on m. The ‘‘cut-off’’

variants remove this dependence. The linear time preprocessing variant of the SDP ‘‘cut-

off’’ is always slower than the plain version. This is due to the small effective alphabet size

of the MIDI file. For large alphabets with flat distribution the linear time preprocessing

variant quickly becomes faster as m (and hence the pattern alphabet) increases. The col-

umn-wise SDP algorithm and especially Simple algorithm are very efficient, beating

everything else if d and a are reasonably small. For very small d and a and moderate m the

BMH variant of Simple is even faster. For large (d,a) the differences between the algo-

rithms become smaller. The reason is that a large fraction of the text begins to match the

pattern. However, this means that these large parameter values are less interesting for this

application. The bit-parallel algorithm (Navarro and Raffinot 2003) is competitive but

suffers from requiring more bits than fit into a single machine word, yet Algorithm 5 is

even slower, besides having more efficient packing. This is attributed to the additional

(constant time per text character) overhead due to the more complex packing.

9.1 Transposition invariance

We also experimented with the transposition invariant algorithms. The following algo-

rithms were tested:

BF-Simple: Plain Simple executed O(r) times;

Simple: Transposition invariant Simple (Algorithm 6);

 0.1

 1

 10

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

Transposition invariant (1,2)-matching

 0.1

 1

 10

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

tim
e

(s
)

m

Transposition invariant (2,2)-matching

 0.1

 1

 10

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=16, Transposition invariant (1,α)-matching

 0.1

 1

 10

 1 2 3 4 5 6 7 8

tim
e

(s
)

α

m=32, Transposition invariant (2,α)-matching

BF-Simple Simple DP Cut-off DP

Fig. 4 Running times for transposition invariant (d,a)-matching in seconds for m = 8…128 (top) and for
a = 1…8 (bottom). Note the logarithmic scale

Inf Retrieval (2008) 11:335–357 355

123

DP: (Transposition invariant) Dynamic Programming algorithm;

DP Cut-off: ‘‘Cut-off’’ version of DP (Algorithm 7).

The results are shown in Fig. 4. In this case Simple is again clear winner, despite of the

theoretical superiority of DP Cut-off. For large a DP (Cut-off) would eventually beat

Simple, but in practical applications such large parameters are not interesting.

9.2 PROSITE patterns

We also ran preliminary experiments on searching PROSITE patterns from a 5 MB file of

concatenated proteins. The PROSITE patterns include character classes and general

bounded gaps. Searching 1,323 patterns took about 0.038 s per pattern with Simple, and

about 0.035 s with NFA. Searching only the short enough patterns that can fit into a single

computer word (and hence using specialized implementation), the NFA times drops to

about 0.025 s. However, we did not implement the backward search version, which is

reported to be substantially faster in most cases (Navarro and Raffinot 2003). Finally, note

that the time for Simple would be unaffected even if the gaps were negative, since only the

magnitude of the gap length affect the running time.

10 Conclusions

We have presented new efficient algorithms for string matching with bounded gaps and

character classes. Some of those algorithms are designed to work under transposition

invariance. Besides having theoretically good worst and average case complexities, the

algorithms are shown to work well in practice. Finally, despite that the algorithms were

designed for MIR, they have important applications in MB as well. In particular, we can

handle even negative gaps efficiently.

Acknowledgment K. Fredriksson was supported by the Academy of Finland. This work was done while
the author worked in the Department of Computer Science and Statistics, University of Joensuu.

References

Baeza-Yates, R. A., & Gonnet, G. H. (1992). A new approach to text searching. Communications of the
ACM, 35(10), 74–82.

Cantone, D., Cristofaro, S., & Faro, S. (2005a). An efficient algorithm for d-approximate matching with a-
bounded gaps in musical sequences. In Proceesings of WEA’05. LNCS (Vol. 3503, pp. 428–439).
Springer.

Cantone, D., Cristofaro, S., & Faro, S. (2005b). On tuning the (d,a)-sequential-sampling algorithm for d-
approximate matching with a-bounded gaps in musical sequences. In Proceedings of ISMIR’05.

Crochemore, M., Czumaj, A., Gąsieniec, L., Jarominek, S., Lecroq, T., Plandowski, W., & Rytter, W.
(1994). Speeding up two string matching algorithms. Algorithmica, 12(4–5), 247–267.

Crochemore, M., Iliopoulos, C., Makris, C., Rytter, W., Tsakalidis, A., & Tsichlas, K. (2002). Approximate
string matching with gaps. Nordic Journal of Computing, 9(1), 54–65.

Crochemore, M., Iliopoulos, C., Navarro, G., Pinzon, Y., & Salinger, A. (2005). Bit-parallel (d,c)-matching
suffix automata. Journal of Discrete Algorithms (JDA), 3(2–4), 198–214.

Fredriksson, K., & Grabowski, S. (2006). Efficient bit-parallel algorithms for (d,a)-matching. In Proceed-
ings of WEA’06. LNCS (Vol. 4007, pp. 170–181). Springer.

Horspool, R. N. (1980). Practical fast searching in strings. Software Practice and Experience, 10(6),
501–506.

356 Inf Retrieval (2008) 11:335–357

123

Johnson, D. B. (1982). A priority queue in which initialization and queue operations take O(log log D) time.
Mathematical Systems Theory, 15, 295–309.

Mäkinen, V. (2003). Parameterized approximate string matching and local-similarity- based point-pattern
matching. PhD thesis, Department of Computer Science, University of Helsinki.

Mäkinen, V., Navarro, G., & Ukkonen, E. (2005). Transposition invariant string matching. Journal of
Algorithms, 56(2), 124–153.

Mehldau, G., & Myers, G. (1993). A system for pattern matching applications on biosequences. Computer
Application in the Bioscience, 9(3), 299–314.

Myers, G. (1996). Approximate matching of network expression with spacers. Journal of Computational
Biology, 3(1), 33–51.

Navarro, G., & Raffinot, M. (2000). Fast and flexible string matching by combining bit-parallelism and
suffix automata. ACM Journal of Experimental Algorithmics (JEA), 5(4). http://www.jea.acm.org/
2000/NavarroString.

Navarro, G., & Raffinot, M. (2003). Fast and simple character classes and bounded gaps pattern matching,
with applications to protein searching. Journal of Computational Biology, 10(6), 903–923.

Paul, W., & Simon, J. (1980). Decision trees and random access machines. In ZUERICH: Proceedings of the
Symposium Logik und Algorithmik (pp. 331–340).

Pinzón, Y. J., & Wang, S. (2005). Simple algorithm for pattern-matching with bounded gaps in genomic
sequences. In Proceedings of ICNAAM’05 (pp. 827–831).

Inf Retrieval (2008) 11:335–357 357

123

http://www.jea.acm.org/2000/NavarroString
http://www.jea.acm.org/2000/NavarroString

	Efficient algorithms for pattern matching with general gaps, character classes, and transposition invariance
	Abstract
	Introduction
	Preliminaries
	Row-wise sparse dynamic programming
	Efficient worst case
	Efficient average case
	Faster preprocessing
	O(\sqrt{\delta}n) time preprocessing
	O(n) time preprocessing

	Improved algorithm for large &agr;

	Column-wise sparse dynamic programming
	Simple algorithm
	Sublinear average case

	Non-deterministic finite automata
	Sublinear average case

	Handling character classes and general gaps
	Character classes
	Negative and range-restricted gaps

	Transposition invariance
	Transposition invariant Simple
	Transposition invariant DP
	Cut-off
	Bit-parallel algorithm

	Experimental results
	Transposition invariance
	PROSITE patterns

	Conclusions
	Acknowledgment
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

